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1 Introduction

American football, like many other popular team sports, is fundamentally about
the creation and use of space. Offensive linemen and defensive linemen struggle
to control the space near the quarterback. Wide receivers run precise routes to
gain separation from defensive backs. Linebackers are given gap assignments
to control the running game. Despite the significance of space in the game of
football, few methods exist for quantifying player occupation and the creation
of space on the football field.

Significant attention has been devoted to understanding the value of space
in sports such as basketball and soccer. [1] uses a weighted Voronoi concept,
in which a given location on a basketball court is assumed to be owned by the
nearest player. The degree of ownership is defined to be inversely proportional
to the distance from the nearest player, restricted to the unit interval. While
this definition of space ownership is reasonable and easy to implement, it fails
to take into account the direction and magnitude of player motion. If a player
is running at a full sprint, an ideal space ownership model would assign greater
ownership to areas in the direction of motion and less ownership to areas away
from the direction of motion.

In an attempt to address this problem and the non-exclusive nature of space
ownership in the game of soccer, [2] uses a bivariate normal density function to
quantify space creation. The mean vector and covariance matrix of this normal
density is a function of the player’s initial velocity vector and the player’s dis-
tance from the ball. This model works well when players are assumed to follow a
consistent trajectory over time. However, it is not physically motivated, failing
to account for potential sharp changes of direction that characterize the game
of football.

In this article, we propose a physical model of space ownership that not only
takes initial speed and angle into account, but allows for player-specific variation
in deceleration, change-of-direction ability, acceleration, and maximum speed.



The fundamental idea behind our approach is that a space is owned by the player
who can beat every other player to that space. This has broad applications to
the evaluation of quarterbacks and receivers, since this model can identify open
receivers well in advance of other models that have been previously proposed.

2 Optimal Player Trajectory Planning

In order to determine which player will arrive at a location first, we need to first
determine the time-optimal trajectory for each player and then compute the
time that it will take each player to arrive at that location. This type of prob-
lem has been heavily studied in the robotics and autonomous vehicles literature
[3, 4] and typically involves formulating the problem as a constrained non-linear
programming problem. Smoothing splines or B-splines are often used to model
the trajectory of agents as well [5].

As is common in the literature, we also treat optimal player trajectory plan-
ning as a non-linear programming problem. However, we impose simplifying
assumptions on the trajectory to simultaneously improve model interpretability
and optimization stability. Specifically, we assume that a player’s time-optimal
trajectory to a location consists of a maximum of three ordered phases: expo-
nential deceleration, constant-velocity turn, and exponential acceleration. This
eliminates all routes in which a player performs multiple changes of direction,
which are sub-optimal without the presence of dynamic obstacles. Further, we
assume that a player will turn no more than 360 degrees during his optimal
route, preventing local optima where a player turns in circles for a period of
time. Finally, we assume that there exists a maximum centripetal force that a
player’s body can endure without injury, for it becomes increasingly difficult for
players to make sharp turns as velocity increases. We believe that this bound on
centripetal force increases throughout youth player development, as [6] found
that young rugby players take more rounded, inefficient turns than older rugby
players.

In our model, we assume that player-specific differences in movement time
can be attributed to five distinct parameters: maximum controlled decelera-
tion rate, maximum controlled acceleration rate, maximum speed, maximum
centripetal force, and player mass. Notationally, we denote these parameters
by k4, kay Vmaz, Fmaz, and m respectively. Suppose that a player is moving at
speed sg in direction 6y and is currently at location py = (20, yo). Given that the
player’s path follows a straight path, followed by a sharp circular cut, followed
by another straight path to the destination, we would like to find the minimum
amount of time that it will take for the player to reach location py = (z1,y1).
Our model assumes that the speed and direction of the player’s movement from
po to pi is dictated by the following set of parametric equations:
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where w is the player’s angular velocity. The position of the player at ¢t = 0
is (zo,y0) and the position at t = t3 is (x1,y1). The change in = from ¢ = 0
to t = t3 is fgd s(t) cos(A(t))dt. The change in y from t = 0 to t = t3 is
fots s(t) sin(6(t))dt. The free variables in this case are ti, t2, t3, and w. As such,
we have two equality constraints and five inequality constraints:
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where m is the mass of the player. Evaluating the integrals in (3) and (4),
we have that

/0 s(t) cos(ﬂ(t))dt:/o s(t) cos(@(t))dtJr/ s(t) cos(@(t))dtJr/ s(t) cos(6(t))dt

tl t2

t1 to
= / soe %t cos(p)dt + / s(t1) cos(fp + w(t — t1))dt
0

t1

+ / 38(t1)+(vmax — 5(t1))(1 — e~ Fe(t=t2) ) cos (0 (t2) )dt

ta
s0 cos(fp) s(t1)
w

= 20O (1 ekatny 4

kq
<S(t1) - vmaz)
kq

(sin(fo + w(t2 —t1)) —sin(6p))

(1 - e_ka(ts_tz)) + vmaa:(t?) - t2)

(8)

+ cos(0(t2)) [



/0 s(t) sin(0())dt = /0 s(t) sin(0(8))dt + /t s(t) sin(0(8))dt + / s(t) sin(0(t))dt

ta

t1 to
= / Soeikd’t sin(ﬁo)dt + / S(tl) sin(Go + w(t - tl))dt
0

ty

+/Ss(tl)—I—(vmam—s(tl))(l—e_ka(t_tz))sin(ﬁ(tg))dt

ta

— Sosmi%o) sin(6o) (1 — e Fatry — %l)(cos(é?o +w(ta —t1)) — cos(bp))

kd
t max - - -
(S(l)k—v)(l — e kalts t2)) + Upaz (ts — t2)

(9)

To facilitate ease of computation, we reparameterize the model in terms of
s(t1), s(t1)/w, w(ta — t1), and t3 — t2. We then use sequential least squares
quadratic programming techniques [7] to find a locally optimal trajectory that
satisfies the imposed physical constraints (3) - (7), as implemented in the nloptr
R package [8]. We find suitable initial values using the L-BFGS-B optimization
algorithm, assuming that the turn speed is a tenth of the initial speed and that
the turn radius is double the lower bound implied by the maximum centripetal
force. The algorithms iterate until convergence. For a small number of initial
conditions (less than 1%), the algorithm failed to convergence, so we used ran-
dom forests trained on all other trajectories to impute these times.

+sin(0(t2)) {

3 Empirical Example

Consider a situation in which a player weighs 200 1bs and whose maximum de-
celeration rate and maximum acceleration rate are both equal to 2. Further
suppose that his maximum speed is 9 meters per second, and that the maxi-
mum amount of centripetal force he can endure is equal to 4007 pound meters
per second squared. These numbers, while intended to be somewhat realistic,
are merely for the sake of example. Ideally, teams can estimate these quantities
using data collected from the scouting combine, player tracking technology, or
via wearable technology.

Given a variety of initial velocities and initial angles from the target, we
would like to compare the estimated time it takes this player to reach the target
under our model. Figure 1 provides comparisons for this player at distances of
2, 5, 15, and 40 yards away from the target.

From Figure 2, it is clear that players most control the space near them when
they are moving slowly. At two yards away, a player moving at top speed with
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Figure 1: Time to location via optimal trajectory at distance of (a) 2 yards, (b) 5
yards, (c) 15 yards, and (d) 40 yards. A total of 400 velocity/angle combinations
were used to make this graph. For the sake of illustration, the player is assumed
to be moving with at least a slight angle with the target.



even a small angle from the target will overshoot his intended location, forcing
him to backtrack. As the distance from the target increases, it becomes better
for a player to be going faster, so long as his initial velocity vector is less than
90 degrees from the target. There is a substantial difference in the time it takes
to reach the destination by velocity and angle. The time it takes to decelerate
and make a 180 degree turn is over a second.

4 Applications to NFL Player Tracking Data

Player tracking data represents the next-generation of information regarding
player performance and movement on the football field. To apply the method-
ology developed above to this data, we need to use our model to calculate the
time that it will take each player to reach all locations on the field, updating
that calculation every tenth of a second. This is computationally prohibitive, so
we decide to use a neural network to approximate travel times under an optimal
trajectory. To do this, we randomly simulate distances from a truncated normal
distribution and angles uniformly from [—m, 7]. For each of these pairs, we use
our physical model to estimate player travel time. We then use this data to
train a neural network optimized to minimize the mean-squared error between
its predictions and our model outputs. The network has two hidden layers with
64 and 32 nodes respectively, with rectified linear unit activation functions. We
also partition the football field into square yards, so as to limit the number of
predictions that we will need to make in a given frame.

The mean absolute validation error of our neural network is 0.03 seconds,
and the network generally does well in capturing clear instances of space own-
ership. Using this neural network, we then predict the time that it would take
each player to reach every square yard on the field, identifying the player achiev-
ing the estimated minimum time for each location. All players are assumed to
have the same constants and bounds as the example player in Figure 1.

Consider a play from Week 4 of the 2017 regular season between the Oakland
Raiders and the Denver Broncos. Oakland quarterback Derek Carr (Black #4)
takes the snap from the shotgun formation and pump fakes to tight end Clive
Walford (Black #88), freezing Denver safety Darian Stewart (Orange #26).
That’s all the time that Oakland receiver Johnny Holton (Black #16) needs to
get behind Stewart for a 64-yard catch-and-run touchdown. Figure 2 illustrates
the space created during a crucial portion of the play, where Holton beats Stew-
art over the top.

At the moment of the snap (a), each side largely controls the space on their
side of the line of scrimmage. Some receivers control space just past the line
of scrimmage due to the lack of press coverage. The Broncos play very good
coverage for the first 2.3s of the play (b). However, once Darian Stewart bites
on the pump fake (¢), Johnny Holton claims a large swath of space in the deep
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Figure 2: Neural network approximation to the space ownership model.



right portion of the field. When the ball is released (d), Holton controls nearly
the entire right side of the field past the Denver 40 yard line.

5 Discussion

In this paper, we develop a novel, yet general physical model to quantify space
ownership in professional sports. This model has particular applications in the
game of football, since players change direction quickly in order to create space.
This method allows for player-specific variation in speed, acceleration, decelera-
tion, and change-of-direction ability. By incorporating initial conditions such as
speed and direction of movement, we are able to identify when a receiver beats
a defender well before Voronoi-based models.

There are many potential uses for this space ownership model within pro-
fessional football. For one, quarterback decision making can be evaluated with
more context, since quarterbacks need to anticipate receivers coming open. With
this model, we account for receivers slowing down in preparation of a cut, en-
abling the identification of open receivers much more quickly. Secondly, space
ownership models can be leveraged with ball positioning data to create a real-
time expected yards metric from a play, similar to the expected possession value
introduced in [9] for the game of basketball. The efficacy of coverage and pass
rush can also be assessed via a space ownership model, as defensive backs aim
to reduce the amount of space owned by the wide receivers and pass rushers
attempt to constrict the space that a quarterback has to operate.

Due to the time restrictions associated with this paper, there were many
concepts that we were unable to explore in this paper and would like to further
develop in the future. In particular, players are not able to freely take any routes
to points on the field because they are allowed to be blocked by other players. As
such, the current version of the model does not capture space creation near the
line of scrimmage very well, since offensive linemen have the ability to control
space behind them by blocking pass rushers and defenders are allowed to play
press coverage. Future versions may further incorporate adversarial trajectory
planning, though this substantially increases the model complexity.

Moreover, we would also like to incorporate a notion of shared ownership
of space. As an example, it is difficult to tell who actually owns the space in
the left-hand side of Figure 2 (b) since the defender and wide receiver are im-
mediately adjacent to one another. Ownership of a location may be defined to
be shared if more than one player is able to catch a ball thrown to that location.

Team sports primarily involve players occupying, creating and taking ad-
vantage of space. As more data becomes available in team sports, teams and
analysts alike will be able to quantify not only the possession of space, but also
the value of space ownership to the team. The methodology developed in this



paper has applications to all team sports, not just American football. Never-
theless, a time-optimal trajectory model for player space ownership has broad
uses in today’s NFL, as teams continue to mine NFL Next Gen Stats data for
actionable insights.

Replication code is available at github.com/burrisk/Big-Data-Bowl.
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